The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Photo Jan Forsman

Jan Forsman

Professor

Photo Jan Forsman

A classical density functional study of clustering in ionic liquids at electrified interfaces

Author

  • Ke Ma
  • Jan Forsman
  • Clifford E. Woodward

Summary, in English

Ion association, leading to the formation of clusters in ionic liquids, is investigated within the framework of classical density functional theory. Clusters are incorporated into a generic coarse-grained model for imidazolium-based ionic liquids confined by planar charged surfaces. We find that the short-ranged structure adjacent to surfaces is remarkably unaffected by the degree of ion association. The physical implications of ion clustering only become apparent in equilibrium properties that depend upon the long-range screening of charge, such as the asymptotic behavior of forces between charged surfaces and the differential capacitance around low surface potentials. Surface forces show a longrange exponential decay, which depends primarily on the concentration of nonassociated ions, while the differential capacitance seems to be a sensitive function of the internal structure of clusters. Furthermore, the size of the ion clusters only slightly influences surface forces, but has a significant effect on the differential capacitance. These behaviors would be difficult to observe in simulations due to the system sizes required.

Department/s

  • Computational Chemistry

Publishing year

2017-01-01

Language

English

Pages

1742-1751

Publication/Series

Journal of Physical Chemistry C

Volume

121

Issue

3

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Physical Chemistry (including Surface- and Colloid Chemistry)

Status

Published

ISBN/ISSN/Other

  • ISSN: 1932-7447