The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Photo Jan Forsman

Jan Forsman

Professor

Photo Jan Forsman

Molecular Dynamic Simulations of Ionic Liquid's Structural Variations from Three to One Layers inside a Series of Slit and Cylindrical Nanopores

Author

  • Ke Ma
  • Xuewei Wang
  • Jan Forsman
  • Clifford E. Woodward

Summary, in English

We apply molecular dynamic simulations to describe [C2mim+][Tf2N-] ionic liquids and its mixtures with solvents confined inside carbon nanopores. Both slit and cylindrical pores are modeled to determine the influence of pore geometry on the electric double layer (EDL) structure and capacitance. Two types of solvents are selected to dilute the ionic liquids in order to establish the effect of solvent polarity. The number of cations, anions, and solvents is chosen to be consistent with their densities in the bulk state. We focus on the structural changes of ionic liquids and their relation to the oscillation in capacitance as a function of varying nanopore size. Structural transitions are analyzed from one layer to two layers and three layers within the confinement of the nanoscale pores. Compared with slit pores, the capacitance oscillates more strongly for cylindrical pores where ions form two peaks instead of combining into a single peak in the middle of the pore. The addition of solvent does not give rise to a larger capacitance despite the solvent's closer approach to the electrode.

Department/s

  • Computational Chemistry

Publishing year

2017-06-29

Language

English

Pages

13539-13548

Publication/Series

Journal of Physical Chemistry C

Volume

121

Issue

25

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Physical Chemistry (including Surface- and Colloid Chemistry)

Status

Published

ISBN/ISSN/Other

  • ISSN: 1932-7447