The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Photo Jan Forsman

Jan Forsman

Professor

Photo Jan Forsman

Repulsion between oppositely charged macromolecules or particles

Author

  • Martin Trulsson
  • Bo Jönsson
  • Torbjörn Åkesson
  • Jan Forsman
  • Christophe Labbez

Summary, in English

The interaction of two oppositely charged surfaces has been investigated using Monte Carlo simulations and approximate analytical methods. When immersed in an aqueous electrolyte containing only monovalent ions, two such surfaces will generally show an attraction at large and intermediate separations. However, if the electrolyte solution contains divalent or multivalent ions, then a repulsion can appear at intermediate separations. The repulsion increases with increasing concentration of the multivalent salt as well as with the valency of the multivalent ion. The addition of a second salt with only monovalent ions magnifies the effect. The repulsion between oppositely charged surfaces is an effect of ion-ion correlations, and it increases with increasing electrostatic coupling and, for example, a lowering of the dielectric permittivity enhances the effect. An apparent charge reversal of the surface neutralized by the multivalent ion is always observed together with a repulsion at large separation, whereas at intermediate separations a repulsion can appear without charge reversal. The effect is hardly observable for a symmetric multivalent salt (e.g., 2:2 or 3:3).

Department/s

  • Computational Chemistry

Publishing year

2007

Language

English

Pages

11562-11569

Publication/Series

Langmuir

Volume

23

Issue

23

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Theoretical Chemistry (including Computational Chemistry)

Status

Published

ISBN/ISSN/Other

  • ISSN: 0743-7463