The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Photo Lynn Kamerlin

Lynn Kamerlin

Professor

Photo Lynn Kamerlin

The effect of leaving group on mechanistic preference in phosphate monoester hydrolysis

Author

  • Shina C L Kamerlin
  • John Wilkie

Summary, in English

We present 2-dimensional potential energy surfaces and optimised transition states (TS) for water attack on a series of substituted phosphate monoester monoanions at the DFT level of theory, comparing a standard 6-31++g(d,p) basis set with a larger triple-zeta (augmented cc-pVTZ) basis set. Small fluorinated model compounds are used to simulate increasing leaving group stability without adding further geometrical complexity to the system. We demonstrate that whilst changing the leaving group causes little qualitative change in the potential energy surfaces (with the exception of the system with the most electron withdrawing leaving group, CF(3)O(-), in which the associative pathway changes from a stepwise A(N) + D(N) pathway to a concerted A(N)D(N) pathway), there is a quantitative change in relative gas-phase and solution barriers for the two competing pathways. In line with previous studies, in the case of OCH(3), the barriers for the associative and dissociative pathways are similar in solution, and the two pathways are equally viable and indistinguishable in solution. However, significantly increasing the stability of the leaving group (decreasing proton affinity, PA) results in the progressive favouring of a stepwise dissociative, D(N) + A(N), mechanism over associative mechanisms.

Publishing year

2011-08-07

Language

English

Pages

406-5394

Publication/Series

Organic and Biomolecular Chemistry

Volume

9

Issue

15

Document type

Journal article

Publisher

Royal Society of Chemistry

Keywords

  • Hydrolysis
  • Molecular Structure
  • Organophosphates/chemistry
  • Phosphates/chemistry
  • Quantum Theory
  • Thermodynamics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1477-0539