The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Photo Marie Skepö

Marie Skepö

Professor

Photo Marie Skepö

Adsorption of Fibrinogen on Silica Surfaces-The Effect of Attached Nanoparticles

Author

  • Kristin Hyltegren
  • Mats Hulander
  • Martin Andersson
  • Marie Skepö

Summary, in English

When a biomaterial is inserted into the body, proteins rapidly adsorb onto its surface, creating a conditioning protein film that functions as a link between the implant and adhering cells. Depending on the nano-roughness of the surface, proteins will adsorb in different amounts, with different conformations and orientations, possibly affecting the subsequent attachment of cells to the surface. Thus, modifications of the surface nanotopography of an implant may prevent biomaterial-associated infections. Fibrinogen is of particular importance since it contains adhesion epitopes that are recognized by both eukaryotic and prokaryotic cells, and can therefore influence the adhesion of bacteria. The aim of this study was to model adsorption of fibrinogen to smooth or nanostructured silica surfaces in an attempt to further understand how surface nanotopography may affect the orientation of the adsorbed fibrinogen molecule. We used a coarse-grained model, where the main body of fibrinogen (visible in the crystal structure) was modeled as rigid and the flexible α C-chains (not visible in the crystal structure) were modeled as completely disordered. We found that the elongated fibrinogen molecule preferably adsorbs in such a way that it protrudes further into solution on a nanostructured surface compared to a flat one. This implicates that the orientation on the flat surface increases its bio-availability.

Department/s

  • Computational Chemistry
  • LINXS - Institute of advanced Neutron and X-ray Science
  • eSSENCE: The e-Science Collaboration

Publishing year

2020-03-06

Language

English

Publication/Series

Biomolecules

Volume

10

Issue

3

Document type

Journal article

Publisher

MDPI AG

Topic

  • Physical Chemistry (including Surface- and Colloid Chemistry)

Keywords

  • coarse-grained modeling
  • fibrinogen
  • nanoparticles
  • nanotopography
  • protein adsorption

Status

Published

ISBN/ISSN/Other

  • ISSN: 2218-273X