The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Photo Marie Skepö

Marie Skepö

Professor

Photo Marie Skepö

Flocculated Laponite-PEG/PEO Dispersions with Multivalent Salt : A SAXS, Cryo-TEM, and Computer Simulation Study

Author

  • Axel Thuresson
  • M. Segad
  • Tomás S. Plivelic
  • Marie Skepö

Summary, in English

The aim of this study is to scrutinize the mechanism behind aggregation, i.e., tactoid formation of nanostructures with the shape of a platelet. For that purpose, the clay minerals Laponite and montmorillonite have been used as model systems. More specifically, we are interested in the role of: the platelet size, the electrostatic interactions, and adsorbing polymers. Our hypothesis is that the presence of PEG is crucial for tactoid formation if the system is constituted by small nanometric platelets. For this purpose, SAXS, USAXS, Cryo-TEM, and coarse-grained molecular dynamics simulations have been used to study how the formation and the morphology of the tactoids are affected by the platelet size. The simulations indicate that ion-ion correlations are not enough to induce large tactoids solely if the platelets are small and the absolute charge is too low, i.e., in the size and charge range of Laponite. When a polymer is introduced into the system, the tactoid size grows, and the results can be explained by weak attractive electrostatic correlation forces and polymer bridging. It is shown that when the salt concentration increases the long-ranged electrostatic repulsion is screened, and a free energy minimum appears at short distances due to the ion-ion correlation effects. When a strongly adsorbing polymer is introduced into the system, a second free energy minimum appears at a slightly larger separation. The latter dominates if the polymer is relatively long and/or the polymer concentration is high enough. (Graph Presented).

Department/s

  • Computational Chemistry
  • MAX IV Laboratory
  • eSSENCE: The e-Science Collaboration

Publishing year

2017-04-06

Language

English

Pages

7387-7396

Publication/Series

Journal of Physical Chemistry C

Volume

121

Issue

13

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Physical Chemistry (including Surface- and Colloid Chemistry)

Status

Published

ISBN/ISSN/Other

  • ISSN: 1932-7447