The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Photo Mikael Lund

Mikael Lund

Professor

Photo Mikael Lund

Salt Effects on Caffeine across Concentration Regimes

Author

  • Stefan Hervø-Hansen
  • Jakub Polák
  • Markéta Tomandlová
  • Joachim Dzubiella
  • Jan Heyda
  • Mikael Lund

Summary, in English

Salts affect the solvation thermodynamics of molecules of all sizes; the Hofmeister series is a prime example in which different ions lead to salting-in or salting-out of aqueous proteins. Early work of Tanford led to the discovery that the solvation of molecular surface motifs is proportional to the solvent accessible surface area (SASA), and later studies have shown that the proportionality constant varies with the salt concentration and type. Using multiscale computer simulations combined with vapor-pressure osmometry on caffeine-salt solutions, we reveal that this SASA description captures a rich set of molecular driving forces in tertiary solutions at changing solute and osmolyte concentrations. Central to the theoretical work is a new potential energy function that depends on the instantaneous surface area, salt type, and concentration. Used in, e.g., Monte Carlo simulations, this allows for a highly efficient exploration of many-body interactions and the resulting thermodynamics at elevated solute and salt concentrations.

Department/s

  • Computational Chemistry
  • eSSENCE: The e-Science Collaboration
  • LINXS - Institute of advanced Neutron and X-ray Science

Publishing year

2023-12

Language

English

Pages

10253-10265

Publication/Series

Journal of Physical Chemistry B

Volume

127

Issue

48

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Theoretical Chemistry (including Computational Chemistry)

Status

Published

ISBN/ISSN/Other

  • ISSN: 1520-6106